An Ensemble Classifier Approach for Static Signature Verification Based on Multi-Resolution Extracted Features
نویسندگان
چکیده
Ensemble classifier is a combining approach to improve the accuracy of the simple classifiers. In this article, we introduced a new method for static handwritten signature verification based on an ensemble classifier. In our introduced method, after pre-processing stage, signature image is convolved with Gabor wavelets to compute the Gabor coefficients in different scales and directions. Three different feature sets are extracted from resulting Gabor coefficients using statistical approaches. A nearest neighbor classifier classifies each feature set by an adaptive method. The proposed ensemble classifier combines the output of the three simple classifiers, which are essentially the same. Although these simple classifiers looks the same, but the different input feature set and the adaptive thresholds related to each classifier makes them to be different with each other. Therefore, from the viewpoint of the classifiers combination, the proposed method can be considered as a feature level combination type. The proposed method was evaluated by applying on two datasets: Persian and South African signature datasets. Experimental results shown our proposed method has the lowest error rate in comparison with other methods.
منابع مشابه
Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملHandwritten Signature Verification Based on Surf Features Using HMM
Handwritten signature broadly used biometric which include elevated intrapersonal variance .Signature are generally used as the personal identification apparatus for human that the necessitate for verification system. Two types verification is performed generally online (dynamic) and offline signature verification (static). The static is offline technology that is used for documents authenticat...
متن کاملSignature Verification Using Static and Dynamic Features
A signature verification algorithm based on static and dynamic features of online signature data is presented. Texture and topological features are the static features of a signature image whereas the digital tablet captures in real-time the pressure values, breakpoints, and the time taken to create a signature. 1D log Gabor wavelet and Euler numbers are used to analyze the textural and topolog...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012